Çalışkan, FatmaAksoy, Refia2024-06-132024-06-1320230354-518010.2298/FIL2315137C2-s2.0-85150511468https://doi.org/10.2298/FIL2315137Chttps://hdl.handle.net/11501/1383In the present study, we define cyclic codes over the commutative principal ideal ring F2 X (F2 + vF2) with v2 = v and obtain some results on cyclic codes over F2 X (F2 + vF2). We also investigate the dual of a cyclic code over F2 X (F2 + vF2) depending on two inner products. We determine a generator polynomial of cyclic codes and give the calculation of the number of cyclic codes over F2 X (F2 + vF2). Furthermore, we show that the Gray images of a cyclic code over F2 X (F2 + vF2) of length n are binary quasi-cyclic codes of length 3n and of index 3. We find numerous binary codes as Gray images of cyclic codes over F2 X (F2 + vF2) and tabulate the optimal ones. Moreover, we show that it is possible to obtain binary quantum error-correcting codes (QECCs) from cyclic codes over F2 X (F2 + vF2).eninfo:eu-repo/semantics/openAccessCyclic CodeGenerator PolynomialDual CodeQuantum CodeCyclic codes over F2 X (F2+vF2) and binary quantum codesCyclic codes over F2 × (F2 + vF2) and binary quantum codesArticle514715Q3513737WOS:000950213700001Q3