Arşiv logosu
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • English
  • Türkçe
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Erdem, Zeynep Uyar" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    CUSTOMER CHURN PREDICTION ANALYSIS IN A TELECOMMUNICATION COMPANY WITH MACHINE LEARNING ALGORITHMS
    (2021) Erdem, Zeynep Uyar; Uslu, Banu Çalış; Fırat, Seniye Ümit
    The purpose of this study is to provide a descriptive analysis of the assessment of machine learning algorithms to an effective customer churn prediction (CCP) methodology. In the rapidly developing field of Customer Relation Management (CRM), to propose a convenient CCP methodology for retaining the customers who tend to churn, a set of data-mining analyses has been conducted to predict customer churn from a bulky dataset from customers with specific attributes in a telecommunication company by using machine learning (ML) algorithms built in an open-source data mining software, WEKA. Throughout the study, a set of experimental analyses regarding customer churn prediction are conducted by using residential, corporate, and combined datasets with the number of incidences of 195712, 32905, and 228617 respectively a private telecommunication company in Turkey. Six data mining algorithms have been evaluated to predict the customer churn status: Logistic Regression, Naive Bayes, J48, and ELM schemes such as RandomForest, Bagging and Boosting. RandomForest uses RandomTree, whereas Bagging uses J48 as a base learner. The experimental analyses are conducted with real-world datasets acquired from the company's historical database to validate some decision trees' effectiveness and ensemble ML classifiers to determine the likelihood of future churning customers based on such data mining analyses implemented for CCP. The results show that the J48 outperforms Naïve Bayes based on all datasets, and it provides very similar results as the Logistic Regression classifier scheme. Besides, since Bagging has not solved the large-sized database and J48 has given similar accurate results in the residential and complete data sets, the J48 decision tree classifier can be chosen and Bagging for customer churn prediction.

| İstanbul Gedik Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Cumhuriyet Mahallesi, İlkbahar Sokak No: 1-3-5, Yakacık, 34876, Kartal, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim