Yazar "Yüksel, Ercan" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Development of Finite Element Model for a Special Lead Extrusion Damper(2021) Güllü, Ahmet; Çalım, Furkan; Yüksel, Ercan; Soydan, CihanA significant amount of seismic energy is imparted to the structures during earthquakes. Theenergy spreads within the structure and transforms in various energy forms as dissipatedthrough the structure. The conventional seismic design provides specific ductile regions,namely plastic hinges, on structural elements. Therefore, the energy dissipation capacities ofthe structural elements and the structure enhance. However, this approach accepts that thedeformations will concentrate on the plastic hinge zones and severe damage may occur onstructural elements within deformation limits that are defined by the seismic codes. The modernseismic design aims to dissipate a large portion of the seismic input energy by installing energydissipating devices (EDDs) to the structure. Thus, deformation concentrates on EDDs whichcan be replaced after an earthquake, and energy demand for structural elements is decreased.Lead extrusion damper (LED) is a passive EDD that utilizes the hysteretic behavior of lead. Inthis paper, the preliminary results of the developed three-dimensional finite element model(FEM) for a LED is presented. The results obtained from the finite element analysis (FEA) werecompared with the experimental ones in which LEDs were exposed to sinusoidal displacements.Also, the applicability of the developed FEM was checked for different component dimensionsgiven in the literature. The comparison study yielded a satisfactory consistency. Additionally,the maximum relative difference obtained for the literature devices was reduced to 12% from39% by the developed FEM.Öğe Experimental investigation and pseudoelastic truss model for in-plane behavior of corrugated sandwich panels with polyurethane foam core(Elsevier Science Inc, 2021) Yüksel, Ercan; Güllü, Ahmet; Özkaynak, Hasan; Soydan, Cihan; Khajehdehi, Arastoo; Şenol, Erkan; Saghayesh, Amir Mahdi; Saruhan, HakanSandwich panels are commonly used in facades and the roofs of industrial buildings due to their well-known advantages. However, there is limited data about the in-plane behavior of the panels. Hence, this paper aimed to propose a pseudoelastic truss model to represent the effective in-plane stiffness and strength properties of the corrugated sandwich panels with a polyurethane foam core. Two separate sets of experiments (mock-up and system test) were conducted in the laboratory. The variables were the number of fasteners, sheet thickness, loading direction, and number of ribs. The number of fasteners, sheet thickness, and loading direction are the most effective parameters for the in-plane behavior. A formula was proposed to compute axial stiffness of the truss members by considering the effective parameters. Experimental results showed that the proposed robust truss model could give a good estimate of the pseudoelastic stiffness and maximum load bearing capacity of the sandwich panels.Öğe Rapid and easily applicable procedure for full-scale laboratory tests of ballastless slab tracks(ASCE-American Society of Civil Engineers, 2021) Güllü, Ahmet; Özden, Bayezid; Ölçer, Beyazıt; Özcan, Ali İhsan; Binbir, Ergün; Durgun, Yavuz; Saruhan, Hakan; Şahin, Fatih; Şenol, Erkan; Khajehdehi, Arastoo; Noobakhtjoo, Amir; Yüksel, ErcanIncreasing demand for high speed railway lines necessitates reducing construction and maintenance costs. Accordingly, RC slab tracks are preferred due to their advantages such as being almost maintenance free and supplying uniform support conditions. However, new testing procedures are required for the performance evaluation of the slab tracks to identify possible failure modes which may not be observed in numerical analyses. Although there are some procedures in the literature, there still is no consensus on loading intensity, shape, frequency, or number of cycles. A testing procedure that greatly decreases experimental costs was adopted for the design approval tests of precast RC slab tracks. The procedure was evaluated experimentally through full-scale laboratory tests of intact and intentionally damaged specimens. The study demonstrated that the proposed testing procedure reduces experimental costs and identifies the mechanical properties of slab tracks.