Dipole-Dipole Effect to Limits of Entanglement in Multipartite Spin Chain: A Monte Carlo Study
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The entanglement of the ferromagnetically ordered isotropic spin-1/2 chain is discussed. The analytically deriving concurrence of a two-qubit state allows focusing on the effect of dipolar interaction (D). Low fields enable tuning creation/extinction of entangled states, particularly at low temperatures. There is a joint effect of the applied field and dipolar interaction which can’t be disregarded. We perform Quantum Monte Carlo simulations on quantifying localizable entanglement (LE) in terms of upper/lower bounds. Findings reveal that D and B_z are decisive parameters on the production of entanglement including creation and extinction. A non-monotonic behavior has occurred under high fields at the critical temperature. However, strong D provides the stability of LE values concerning distance herewith conserving the unity at low temperatures under zero field. Rival regions are observed for the distant nearest neighbors, particularly odd ones.
Açıklama
Anahtar Kelimeler
Kaynak
International journal of advances in engineering and pure sciences (Online)
WoS Q Değeri
Scopus Q Değeri
Cilt
34
Sayı
2