Developing a novel hybrid model based on GRU deep neural network and whale optimization algorithm for precise forecasting of river's streamflow

dc.contributor.authorGharehbaghi, Amin
dc.contributor.authorGhasemlounia, Redvan
dc.contributor.authorAhmadi, Farshad
dc.contributor.authorMirabbassi, Rasoul
dc.contributor.authorTorabi Haghighi, Ali
dc.date.accessioned2025-06-12T11:38:03Z
dc.date.available2025-06-12T11:38:03Z
dc.date.issued2025
dc.departmentFakülteler, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü
dc.description.abstractStreamflow contemplates a fundamental criterion to evaluate the impact of human activities and climate changes on the hydrological cycle. In this study, a novel innovative deep neural network (DNN) structure by integrating a double Gated Recurrent Units (GRU) neural network model with a multiplication layer and meta-heuristic whale optimization algorithm (WOA) (i.e., hybrid 2GRU×–WOA model) is developed to improve the prediction accuracy and performance of mean monthly Chehel-Chai River’s streamflow (CCRSFm) in Iran. The Pearson’s correlation coefficient (PCC) and Cosine Amplitude Sensitivity (CAS) as feature (input) selection process determine the only precipitation (Pm) as the most effective input variable among a list of on-site potential climate time series parameters recorded in the study area. Thanks to a well-proportioned layer network structural framework in the suggested hybrid 2GRU×–WOA model, it leads to an appropriate total learnable parameter (TLP) compared to standard individual GRU and Bi-GRU as the benchmark models developed in the comparable meta-parameters. This hybrid model under the optimal meant meta-parameters tuned i.e., coupling a state activation functions (SAF) of tanh-softsign, dropout rate (P-rate) of 0.5, numbers of hidden neurons (NHN) of 70, outperforms with an R2 of 0.79, NSE of 0.76, MAE of 0.21 (m3/s), MBE of -0.11(m3/s), and RMSE of 0.36 (m3/s). Hybridizing the 2GRU× model with WOA algorithm causes to increase in the value of R2 by 6.8% and reduce in the value of RMSE by 20.4%. Comparatively, standard individual GRU and Bi-GRU models result in an R2 of 0.59 and 0.66, NSE of 0.55 and 0.6, MAE of 0.91 and 0.53 (m3/s), MBE of 0.047 and − 0.06 (m3/s), RMSE of 1.29 and 0.83 (m3/s), respectively.
dc.identifier.doi10.1038/s41598-025-03185-3
dc.identifier.issn2045-2322
dc.identifier.issue1
dc.identifier.pmid40461540
dc.identifier.scopus2-s2.0-105007145638
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1038/s41598-025-03185-3
dc.identifier.urihttps://hdl.handle.net/11501/2219
dc.identifier.volume15
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthorGharehbaghi, Amin
dc.institutionauthorid0000-0002-2898-3681
dc.language.isoen
dc.publisherNature Research
dc.relation.ispartofScientific Reports
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectChehel-Chai River’s Streamflow
dc.subjectGRU and Bi-GRU Models
dc.subjectMeta-Heuristic Whale Optimization Algorithm
dc.subjectNovel Hybrid 2GRU×–WOA Model
dc.subjectTLP Parameter
dc.titleDeveloping a novel hybrid model based on GRU deep neural network and whale optimization algorithm for precise forecasting of river's streamflow
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Tam Metin / Full Text
Boyut:
4.23 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed to upon submission
Açıklama: