Finger-like manipulator driven by antagonistic nickel-titanium shape memory alloy actuators
Yükleniyor...
Dosyalar
Tarih
2015
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
IEEE
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Shape memory alloy (SMA) actuators generally have a fast response time when heated. However, the return stroke during cooling can be slow and has been a hindrance to the application of SMA actuators in different areas such as robotic hands. Thus, a novel finger-like antagonistic SMA actuator design is presented in this paper. By using different thermal shape setting processes, one SMA actuator was designed to take a curved shape when heated. This actuator was antagonistically coupled to a different actuator that took a straight shape when heated. Thus, alternately heating each actuator caused the finger- like manipulator to flex and extend rapidly. A comparison study was performed between the novel antagonistic design and a single actuator which showed that the both designs applied approximately the same force with the same velocity when flexing. However, the antagonistic design was able to extend, or open, more rapidly with statistical significance. This was demonstrated for 1.5mm, 1.9mm, and 3.0mm SMA actuator diameters.
Açıklama
International Conference on Advanced Robotics (ICAR) -- 27-31 July, 2015 -- Istanbul, Turkey
Anahtar Kelimeler
Nickel-Titanium, Robotic Finger, Shape Memory Alloys, SMA Actuator, Antagonastic SMA Manipulator
Kaynak
International Conference on Advanced Robotics (ICAR)
WoS Q Değeri
N/A
Scopus Q Değeri
N/A