Fabrication and characterization of wire arc additively manufactured ferritic-austenitic bimetallic structure

dc.contributor.authorGürol, Uğur
dc.contributor.authorTurgut, Batuhan
dc.contributor.authorKumek, Hülya
dc.contributor.authorDilibal, Savaş
dc.contributor.authorKoçak, Mustafa
dc.date.accessioned2024-06-13T20:17:51Z
dc.date.available2024-06-13T20:17:51Z
dc.date.issued2023
dc.departmentFakülteler, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü
dc.departmentRektörlük, Kaynak Teknolojisi Uygulama ve Araştırma Merkezi
dc.departmentFakülteler, Mühendislik Fakültesi, Mekatronik Mühendisliği Bölümü
dc.departmentRektörlük, Robot Teknolojisi Araştırma ve Uygulama Merkezi
dc.description.abstractBimetallic parts are used in many industrial fields, such as pressure vessels, shipbuilding, aerospace, and automotive industries. Conventional bimetallic part production involves a combination of two different metals that are joined using welding and brazing operations. Additive manufacturing technologies offer a cost-effective and innovative manufacturing alternative for complex 3D-shaped parts that can have multi-material designs for better structural performance. However, the structural performance of bimetallic components is primarily influenced by the combination of the employed materials, the interface's morphology, and interface bonding strength. This work investigated the microstructure and mechanical behavior of a bimetallic thick-walled structure as WAAM Wall fabricated by depositing low-alloyed metal-cored wire on the top of 316L stainless steel by robotic wire arc additive manufacturing (WAAM) process. The results showed that both low-carbon steel and austenitic stainless steel SS316L wires are suitable for manufacturing defect-free bimetallic WAAM components, which may widen the design flexibility to manufacture bi-metallic and or functionally graded WAAM components. However, detailed microstructural characterization indicated that martensitic microstructure containing chrome carbides was developed at the bimetallic interface due to an increase in Ni and Cr contents, resulting in a sudden increase of 95% in hardness and a sharp decrease of 70% in fracture toughness at the interface region compared to the SS 316L side. This high-hardness region also resulted in an increase of about 113% and 86% for yield and tensile strengths and a sharp reduction of 69% for elongation values in horizontal interface specimens compared to vertical interface specimens.
dc.description.sponsorshipGedik Test Center ; University-Industry Cooperation Support Program
dc.identifier.doi10.1007/s12540-023-01568-7
dc.identifier.endpage1355
dc.identifier.issn1598-9623
dc.identifier.issn2005-4149
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85177599207
dc.identifier.scopusqualityQ1
dc.identifier.startpage1342
dc.identifier.urihttps://doi.org/10.1007/s12540-023-01568-7
dc.identifier.urihttps://hdl.handle.net/11501/1118
dc.identifier.volume30
dc.identifier.wosWOS:001109514000003
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorGürol, Uğur
dc.institutionauthorDilibal, Savaş
dc.institutionauthorKoçak, Mustafa
dc.institutionauthorid0000-0002-3205-7226
dc.institutionauthorid0000-0003-4777-7995
dc.institutionauthorid0000-0001-9193-7277
dc.language.isoen
dc.publisherKorean Institute Metals Materials
dc.relation.ispartofMetals and Materials International
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectWire Arc Additive Manufacturing
dc.subjectBimetallic Structure
dc.subjectInterface Characterization
dc.subjectFerrite-Austenite Interface
dc.subjectMismatch
dc.titleFabrication and characterization of wire arc additively manufactured ferritic-austenitic bimetallic structure
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Tam Metin / Full Text
Boyut:
4.32 MB
Biçim:
Adobe Portable Document Format