Characterization of a low-alloy steel component produced with wire arc additive manufacturing process using metal-cored wire

dc.authoridGürol, Uğur/0000-0002-3205-7226
dc.authoridDilibal, Savas/0000-0003-4777-7995
dc.authoridTURGUT, BATUHAN/0000-0001-6930-2478
dc.authoridKOCAK, MUSTAFA/0000-0001-9193-7277
dc.authorwosidGürol, Uğur/AAN-1097-2021
dc.authorwosidDilibal, Savas/Q-3748-2017
dc.contributor.authorGurol, Ugur
dc.contributor.authorDilibal, Savas
dc.contributor.authorTurgut, Batuhan
dc.contributor.authorKocak, Mustafa
dc.date.accessioned2024-06-13T20:18:22Z
dc.date.available2024-06-13T20:18:22Z
dc.date.issued2022
dc.departmentİstanbul Gedik Üniversitesien_US
dc.description.abstractIn this study, a low-alloy steel component was manufactured using specially produced E70C-6M class of metal-cored welding wire according to AWS A5.18 standard for the WAAM process. The manufactured low-alloy steel component was first subjected to radiographic examination to detect any weld defect. Uniaxial tensile tests were conducted for the bottom, middle and upper regions. The micro-hardness tests were performed parallel to the deposition direction. The results show that microstructures varied from base metal to the face region of the WAAM component, including the bottom, middle and top sections. The bottom region showed lamellar structures; the middle and upper region presented equiaxed ferrite structure with a small amount of grain boundary pearlites and the face region displayed a mix of equiaxed and lamellar structures of ferrites. The yield and ultimate tensile strengths of the top, middle, and bottom regions exhibited similar results varying between 370 MPa and 490 MPa, respectively. In contrast, the top region showed an elongation value about 15% higher than other regions. Moreover, the yield and ultimate tensile strength for WAAM-produced component were found to be 14% and 24% lower than the multiple-pass all-weld metal of E70C-6M class of metal-cored wire.en_US
dc.identifier.doi10.1515/mt-2021-2155
dc.identifier.endpage767en_US
dc.identifier.issn0025-5300
dc.identifier.issn2195-8572
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85131855594en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage755en_US
dc.identifier.urihttps://doi.org/10.1515/mt-2021-2155
dc.identifier.urihttps://hdl.handle.net/11501/1350
dc.identifier.volume64en_US
dc.identifier.wosWOS:000807109800001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWalter De Gruyter Gmbhen_US
dc.relation.ispartofMaterials Testingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLow-Alloy Steelen_US
dc.subjectMechanical Propertiesen_US
dc.subjectMetal-Cored Wireen_US
dc.subjectMicrostructureen_US
dc.subjectWire Arc Additive Manufacturingen_US
dc.subjectThin-Walled Partsen_US
dc.subjectMechanical-Propertiesen_US
dc.subjectMicrostructureen_US
dc.titleCharacterization of a low-alloy steel component produced with wire arc additive manufacturing process using metal-cored wireen_US
dc.typeArticleen_US

Dosyalar