Characterization of energy dissipative cushions made of Ni-Ti shape memory alloy

dc.authoridGÜLLÜ, AHMET/0000-0001-6678-9372
dc.authoridDilibal, Savas/0000-0003-4777-7995
dc.authorwosidGÜLLÜ, AHMET/AAF-2358-2020
dc.authorwosidDilibal, Savas/Q-3748-2017
dc.contributor.authorGullu, Ahmet
dc.contributor.authorDanquah, Josiah Owusu
dc.contributor.authorDilibal, Savas
dc.date.accessioned2024-06-13T20:18:14Z
dc.date.available2024-06-13T20:18:14Z
dc.date.issued2022
dc.departmentİstanbul Gedik Üniversitesien_US
dc.description.abstractEarthquake-resistant design of structures requires dissipating seismic energy by deformations of structural members or additional fuse elements. Owing to its easy-to-produce, plug-and-play, high equivalent damping ratio, and large displacement capacity characteristics, energy dissipative steel cushions (SCs) were found to be an efficient candidate for this purpose. However, similar to other conventional metallic dampers, residual displacement after a strong shaking is the most notable drawback of the SCs. In this work, cushions produced from Ni-Ti shape memory alloy (SMA) are evaluated numerically by experimentally verified finite element models to assess their impact on the performance of earthquake-resistant structures. Furthermore, a reinforced concrete testing frame is retrofitted with energy dissipative steel and Ni-Ti cushions. Performance of the frames (e.g. dissipated energy by the cushions, hysteretic energy to input energy ratio, maximum drift, and residual drift) with different types of cushions are evaluated by nonlinear response history analyses. The numerical results showed that the SCs are effective to reduce peak responses, while Ni-Ti cushions are more favorable to reduce residual drifts and deformations. Hence, a hybrid system, employing the steel and SMA cushions together, is proposed to reach optimal seismic performance.en_US
dc.identifier.doi10.1088/1361-665X/ac383d
dc.identifier.issn0964-1726
dc.identifier.issn1361-665X
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85122504770en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1088/1361-665X/ac383d
dc.identifier.urihttps://hdl.handle.net/11501/1261
dc.identifier.volume31en_US
dc.identifier.wosWOS:000722400300001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIop Publishing Ltden_US
dc.relation.ispartofSmart Materials and Structuresen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectShape Memory Alloysen_US
dc.subjectEnergy Dissipatoren_US
dc.subjectMetallic Damperen_US
dc.subjectSteel Cushionen_US
dc.subjectHysteretic Responseen_US
dc.subjectNonlinear Response History Analysesen_US
dc.subjectBeam-Column Connectionsen_US
dc.subjectConstitutive Modelen_US
dc.subjectBehavioren_US
dc.subjectSteelen_US
dc.subjectBridgesen_US
dc.subjectHysteresisen_US
dc.subjectMechanismen_US
dc.subjectActuationen_US
dc.subjectDampersen_US
dc.titleCharacterization of energy dissipative cushions made of Ni-Ti shape memory alloyen_US
dc.typeArticleen_US

Dosyalar