High-performance PVdF-HFP/PEG-IL composites: the combined effects of PEG and ionic liquid on proton conductivity and dielectric characteristics

dc.contributor.authorYılmazoğlu, Mesut
dc.contributor.authorOkkay, Hikmet
dc.contributor.authorAbacı, Ufuk
dc.contributor.authorÇoban, Ozan
dc.date.accessioned2024-11-28T09:50:19Z
dc.date.available2024-11-28T09:50:19Z
dc.date.issued2025
dc.departmentFakülteler, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümü
dc.description.abstractThis study explores the influence of varying polyethylene glycol (PEG) concentrations on the properties of PVdF-HFP/PEG-IL polymer composites through comprehensive characterization techniques, including FTIR, SEM, TGA, DMA, XRD and the detailed assessments of proton conductivity, dielectric properties, and relaxation dynamics. In terms of conductivity, the addition of PEG markedly improves proton conductivity. The PVdF-HFP/PEG40-IL composite exhibits the highest conductivity, reaching 1.96 × 10⁻2 S/m at 1 MHz and 300 K, and increasing to 4.27 × 10⁻2 S/m at 420 K. Dielectric properties show that the dielectric constant (ε′) increases with PEG content at low frequencies but decreases at higher frequencies due to reduced ionic polarization. Notably, PVdF-HFP/PEG40-IL achieves a dielectric constant of 3.39 × 106 at 20 Hz, which decreases to 30.34 at 1 MHz. Dielectric loss (ε'') also rises with temperature, with PVdF-HFP/PEG40-IL demonstrating the highest dielectric loss, indicative of superior proton conduction and polarization capabilities. Relaxation dynamics, as evidenced by tanδ, reveal that relaxation time significantly decreases with both increased PEG content and temperature, dropping from 1.06 × 10⁻4 s to 2 × 10⁻6 s as PEG concentration increases from 10 % to 40 %. This reduction in relaxation time correlates with enhanced proton conductivity and faster dipole relaxation, indicating PEG effect as a plasticizer that reduces polymer viscosity and improves ion transport. In conclusion, incorporating PEG into PVdF-HFP-IL composites leads to substantial improvements in proton conductivity, dielectric properties, and relaxation dynamics. The results highlight the crucial role of PEG in optimizing the performance of polymer electrolyte composites, making them effective candidates for advanced energy storage and conversion applications.
dc.identifier.doi10.1016/j.coco.2024.102175
dc.identifier.issn2452-2139
dc.identifier.scopus2-s2.0-85209718709
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.coco.2024.102175
dc.identifier.urihttps://hdl.handle.net/11501/1563
dc.identifier.volume53
dc.identifier.wosWOS:001365165600001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWeb of Science
dc.institutionauthorÇoban, Ozan
dc.institutionauthorid0000-0002-1506-4619
dc.language.isoen
dc.publisherElsevier Ltd
dc.relation.ispartofComposites Communications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDielectric Properties
dc.subjectIonic Liquid
dc.subjectPEG
dc.subjectProton Conductivity
dc.subjectPVdF-HFP
dc.titleHigh-performance PVdF-HFP/PEG-IL composites: the combined effects of PEG and ionic liquid on proton conductivity and dielectric characteristics
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Tam Metin / Full Text
Boyut:
16.43 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed to upon submission
Açıklama: