Robot grasping and regrasping kinematics using Lie algebra, the geodesic, and Riemann curvature tensor

dc.contributor.authorSahin, Haydar
dc.date.accessioned2024-06-13T20:18:28Z
dc.date.available2024-06-13T20:18:28Z
dc.date.issued2023
dc.departmentİstanbul Gedik Üniversitesien_US
dc.description.abstractDifferential geometry is a strong and highly effective mathematical subject for robot grip-per design when grasping within the predetermined trajectories of path planning. This study in grasping focuses on differential geometry analysis utilizing the Lie algebra, geodesic, and Riemann Curvature Tensors (RCT). The novelty of this article for 2RR robot mechanisms lies in the approach of the body coordinate with the geodesic and RCT. The importance of this research is significant especially in grasping and regrasping objects with varied shapes. In this article, the types of workspaces are clarified and classified for grasping and regrasping kinematics. The regrasp has not been sufficiently investigated of body coordinate systems in Lie algebra. The reason for this is the difficulty in understanding relative coordinates in Lie algebra via the body coordinate system. The complexity of the equations has not allowed many researchers to overcome this challenge. The symbolic mathematics toolbox in the Maxima, on the other hand, aided in the systematic formulation of the workspaces in Lie algebra with geodesic and RCT.The Lie algebra se(3) equations presented here have already been developed for robot kinematics from many references. These equations will be used to derive the following workspace types for grasping and regrasping. Body coordinate workspace, spatial coordinate workspace with constraints, body coordinate workspace with constraints, spatial coordinate workspace with constraints are the workspace types. The RCT and geodesic solutions exploit these four fundamental workspace equations derived using Lie algebra.en_US
dc.identifier.doi10.24425/acs.2023.145111
dc.identifier.endpage23en_US
dc.identifier.issn2300-2611
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85159169200en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage5en_US
dc.identifier.urihttps://doi.org/10.24425/acs.2023.145111
dc.identifier.urihttps://hdl.handle.net/11501/1391
dc.identifier.volume33en_US
dc.identifier.wosWOS:000963869100001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPolska Akad Nauk, Polish Acad Sciencesen_US
dc.relation.ispartofArchives of Control Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBody Coordinate Workspaceen_US
dc.subjectSpatial Coordinate Workspaceen_US
dc.subjectRegrasp Planningen_US
dc.subjectMechanismen_US
dc.subjectDifferential Geometryen_US
dc.titleRobot grasping and regrasping kinematics using Lie algebra, the geodesic, and Riemann curvature tensoren_US
dc.typeArticleen_US

Dosyalar