Targeted mesoporous silica nanoparticles for improved inhibition of disinfectant resistant listeria monocytogenes and lower environmental pollution

dc.contributor.authorSudağıdan, Mert
dc.contributor.authorYıldız, Gülşah
dc.contributor.authorÖnen, Selin
dc.contributor.authorAl, Rabia
dc.contributor.authorTemiz, S. Sevval Nur
dc.contributor.authorZafer Yurt, Mediha Nur
dc.contributor.authorTaşbaşı, Behiye Büşra
dc.contributor.authorAcar, Elif Esma
dc.contributor.authorÇoban, Ayşen
dc.contributor.authorAydın, Ali
dc.date.accessioned2024-06-13T20:18:01Z
dc.date.available2024-06-13T20:18:01Z
dc.date.issued2021
dc.departmentFakülteler, Mimarlık ve Tasarım Fakültesi, Gastronomi ve Mutfak Sanatları Bölümü
dc.description.abstractBenzalkonium chloride (BAC) is a common ingredient of disinfectants used for industrial, medical, food safety and domestic applications. It is a common pollutant detected in surface and wastewaters to induce adverse effects on Human health as well as aquatic and terrestrial life forms. Since disinfectant use is essential in combatting against microorganisms, the best approach to reduce ecotoxicity level is to restrict BAC use. We report here that encapsulation of BAC in mesoporous silica nanoparticles can provide an efficient strategy for inhibition of mi-crobial activity with lower than usual concentrations of disinfectants. As a proof-of-concept, Listeria mono-cytogenes was evaluated for minimum inhibitory concentration (MIC) of nanomaterial encapsulated BAC. Aptamer molecular gate structures provided a specific targeting of the disinfectant to Listeria cells, leading to high BAC concentrations around bacterial cells, but significantly reduced amounts in total. This strategy allowed to inhibition of BAC resistant Listeria strains with 8 times less the usual disinfectant dose. BAC encapsulated and aptamer functionalized silica nanoparticles (AptBACNP) effectively killed only target bacteria L. monocytogenes, but not the non-target cells, Staphylococcus aureus or Escherichia coli. AptBACNP was not cytotoxic to Human cells as determined by in vitro viability assays.
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [2019-2236]
dc.description.sponsorshipGY thanks to the Scientific and Technological Research Council of Turkey (TuBITAK) for 2019-2236 project support.
dc.identifier.doi10.1016/j.jhazmat.2021.126364
dc.identifier.issn0304-3894
dc.identifier.issn1873-3336
dc.identifier.pmid34329020
dc.identifier.scopus2-s2.0-85107966926
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.jhazmat.2021.126364
dc.identifier.urihttps://hdl.handle.net/11501/1176
dc.identifier.volume418
dc.identifier.wosWOS:000689377400005
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.institutionauthor0000-0001-6555-3421
dc.institutionauthorÇoban, Ayşen
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofJournal of Hazardous Materials
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDisinfectants
dc.subjectResistant Pathogen Bacteria
dc.subjectAptamers
dc.subjectNanoparticles
dc.subjectListeria
dc.titleTargeted mesoporous silica nanoparticles for improved inhibition of disinfectant resistant listeria monocytogenes and lower environmental pollution
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Tam Metin / Full Text
Boyut:
1.42 MB
Biçim:
Adobe Portable Document Format