Could DTI unlock the mystery of subjective tinnitus: it's time for parameters that go a little out of the routine

Özet

In this study, it was aimed to assess the microstructural changes in the main central auditory pathway in cases with subjective tinnitus. In total, 101 subjects (52 cases with bilateral subjective non-pulsatile tinnitus and 49 healthy cases as the control group) were included in the study. Participants underwent pure tone audiogram and Diffusion Tensor Imaging-Magnetic Resonance Imaging (DTI-MRI) examination with a 3 Tesla MRI device. The number of tracts, tract length, volume, and quantitative anisotropy (QA) and normalized quantitative anisotropy' (nQA) values were calculated by plotting cochleocortical pathways from the cochlear nerve to ipsilateral and contralateral Heschl's gyrus (HG). In pure tone audiometry, the control group had lower hearing thresholds than cases with tinnitus. Fibres and nQA values from the right cochlear nerve to the right HG were significantly lower in the tinnitus group than in the control group. Cochlear nuclei voxel counts were significantly decreased in the tinnitus group. Both cochlear nucleus volumes were higher in the tinnitus group than in the control group. nQA values in both cochlear nuclei were decreased in the tinnitus group. This study showed that the most commonly affected part in subjective non-pulsatile tinnitus cases is the cochlear nucleus. Therefore, the cochlear nucleus should be evaluated more carefully in cases presenting with subjective tinnitus.

Açıklama

Anahtar Kelimeler

Cochlear Nucleus, Diffusion Tensor Imaging, Tinnitus

Kaynak

Indian Journal of Otolaryngology and Head and Neck Surgery

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

76

Sayı

6

Künye